

Welcome to Core JavaScript training

This document has a Search Page.

About this course

	Getting started
	What you need

	Windows and Linux

	Are you ready?

	Yes, you’re ready

	Counters example
	Goal

	counters.html

	counters.css

	counters.js

	Test tools
	How to write tests

	How to run tests

	testools.js

Objects

	Immutables
	Strings

	typeof

	Numbers

	Booleans

	undefined and null

	Gotchas

	Equality
	Double equals

	Triple equality

	Don’t use double equality

	Compare as string

	Compare as number

	Objects
	Simple objects

	Missing attributes

	hasOwnProperty

	Object literals

	Arrays

	Array literals

	JSON

	The object tree
	Tree

	Root

	Create

	Using create

	Simple classes
	Definition

	Why cls?

	Fruit example

Functions

	The global object
	Getting global

	Global variables

	Global pollution

	More global pollution

	Explanation

	Closures
	Test code

	Discussion

	Explanation

	Exercises

	What is this?
	Test code

	Discussion

	Explanation

	Exercises

	Bind is transient
	Test code

	Discussion

	Explanation

	What is new?
	Test code

	Discussion

	No missing new warning

	Arguments
	Test code

	Mark Miller’s device
	Test code

Examples and exercises

	Exercise one
	Hints

	Solution one
	Verbal summary

	Hoisting once-only arguments

	What is AAA?

	The assignment to BBB.fff

	Caveat

	Exercise two
	Hints

	Solution two
	Making a loop

	Factory function

	A prototype class

	A SimpleClass solution

	Exercise: write test

	Exercise: bound method class

Getting started

What you need

You’ll need on your machine

	A JavaScript interpreter which provides a command line

	An editor on your machine.

You’ll also to download and unzip the course work folder.

Windows and Linux

For Windows the easiest thing to do is to download the JSDB
interpreter [http://www.jsdb.org/download.html], and use notepad (or
some other editor).

For Linux you and install Rhino and use your favourite editor.

$ sudo apt-get install rhino

Are you ready?

You’ll want to be able to run the JavaScript interpreter from the
command line when in the work folder. This will be automatic (via the
PATH) with Linux and Rhino. For Windows the easiest thing to do is to
place the jsdb.exe file in the work folder.

When you’re ready type js at a command prompt. This starts the
interpreter and gives you a js> prompt. You’ll get something like
this.

core-javascript-work$ js
Rhino 1.7 release 2 2010 01 20
js>

Now type the command as below at the JavaScript prompt (with Return at the end of
each line) and you’ll get responses as below.

js> a = '0'
0
js> b = 0
0
js> c = ''

js> a == b
true
js> b == c
true
js> a == c
false

You might be surprised by the last response from the interpreter, but
every JavaScript interpreter does this.

Yes, you’re ready

To exit the interpreter use Ctrl-C or Ctrl-D.

Counters example

Goal

The goal is to create a web page which contains several independent
counters. Each time a counter is clicked, it is incremented. Here’s
you can try out a working example of what’s wanted.

Below is the complete code of this example. To simplify the matter,
it is completely self-contained. It uses no library code, other than
the definition of SimpleClass.

In general library code is a good idea. This example is designed to
teach you the basics of JavaScript, and not the use of a library. We
hope that what you learn here will help you choose a library, and
build libraries of your own.

counters.html

<html>
<head>
<script src="library.js"></script>
<script src="counters.js"></script>
<link rel="stylesheet" type="text/css" href="counters.css" />
<title>JS for Python: example: counters</title>
</head>
<body>
<h1>Counters</h1>

<p>Click on a counter to increment its value.</p>

<div id="example">
<p>This will disappear if JavaScript is working properly.</p>
</div>

<p>Return to documentation of Counters example.</p>
</body>

counters.css

body {
 background: #DDD;
 font-family: sans-serif;
}

#example {
 padding: 20px;
}

#example span {
 padding: 10px;
 margin: 10px;
 border: 10px solid blue;
 background: #DDF;
 foreground: blue;
 font-weight: bold;
}

counters.js

(function()
{
 // Define a Counter class.
 var counter = {}; // Prototype object for Counter.

 counter.__init__ = function(name){

 this.name = name;
 this.count = 0;
 };

 counter.onclick = function(event){

 this.count ++;
 };

 counter.html = function(){

 return this.name + ' ' + this.count;
 };

 Counter = SimpleClass(counter);

 // Make explicit use of global variables.
 var global = (function(){return this;})();

 // Interaction.
 var onclick_factory = function(models){

 var onclick = function(event){

	 event = event || global.event; // For IE event handling.
	 var target = event.target || event.srcElement;
 var id = target.id;
 if (id) {
 var id_num = +id.slice(1);
 var model = models[id_num];
 model.onclick();
 var html = model.html();
 if (html){
 global.document.getElementById(id).innerHTML = html;
 }
 }
 };
 return onclick;
 };

 // Set up the web page.
 global.onload = function(){

 var models = [
 Counter('apple'),
 Counter('banana'),
 Counter('cherry'),
 Counter('date')
];

 var element = document.getElementById('example');

 element.innerHTML = (
 'apple 0'
 + 'banana 0'
 + 'cherry 0'
 + 'date 0'
);

 element.onclick = onclick_factory(models);
 element = undefined; // Avoid IE memory leak.
 };

})();

Test tools

To make it easier to test code, and to ensure that example code is
correct, there is a small testtools.js file in the work folder.

How to write tests

To prepare a test create a file like this. It’s also in the work
folder. (For real examples the file will give assert a more
interesting argument, whose truth or falsity is perhaps not obvious.)

TEST('all-pass', function()
{
 assert(2 + 2 === 4);
 assert('the ' + 'cat' === 'the cat');
});

TEST('2-4-fail', function()
{
 assert(true);
 assert(false);
 assert(1);
 assert(0);
});

How to run tests

Here’s how to run the tests at the command line, finishing with a
command prompt that allows you inspect the state and also run the test
again.

Rhino

For Rhino use load to run the test again.

core-javascript-work$ js -f testtools.js -f demo_testtools.js -f -
Testing: all-pass
Testing: 2-4-fail
! assert 2 has failed
! assert 4 has failed
Rhino 1.7 release 2 2010 01 20
js> load('demo_testtools.js') // You type this.
Testing: all-pass
Testing: 2-4-fail
! assert 2 has failed
! assert 4 has failed
js>

JSDB

For JSDB use run to run the test again.

C:core-javascript-work> jsdb -load testtools.js -load demo_testtools.js
Testing: all-pass
Testing: 2-4-fail
! assert 2 has failed
! assert 4 has failed
js> load('demo_testtools.js') // You type this.
Testing: all-pass
Testing: 2-4-fail
! assert 2 has failed
! assert 4 has failed
js>

testools.js

(Optional on a first reading.) Here’s the file testools.js. It’s
short and simple (and has a not-nice dependency on global variables).
It also has a branch based on whether it’s being run on JSDB or Rhino.

var telltail = 'global';
var _assertion_count = 0;

// Define a global function 'log'.
var log;
if (this.hasOwnProperty('jsArguments')){

 log = function(s){
 print(s + '\n');
 };
} else {
 log = print;
}

//
var TEST = function(title, code){

 var x;

 log('Testing: ' + title);
 _assertion_count = 0;

 try {
 code();
 } catch (x) {
 log('! Exception at ' + x.fileName +':' + x.lineNumber);
 log('! [' + x.name + '] ' + x.message);
 }

};

var assert = function(arg){
 _assertion_count += 1;
 if (!arg){
 var msg = '! assert ' + _assertion_count + ' has failed';
 log(msg);
 }
};

Immutables

First, a quick word about variables. A value is an indentifier that
holds a value. In JavaScript every value has a type, but variables
are not typed. In other words, any variable can hold any value. Most
dynamic language (such as Perl, Python and Ruby) are like this.

Always declare variables with a var statement, because sometimes a
missing var can cause a hard-to-find bug. Experiments at the command
line are the only exception to this rule.

We can change an array or a ‘dictionary’. Immutable values are values
that can’t be changed. We can’t change, for example, the third
character in a string.

Strings

Strings literals are delimited by single or double quote marks, with
special characters escaped. There’s no difference between the two
forms (except in single quote you don’t have to escape double quote,
and vice versa.) Generally, I prefer the single quote form as it’s
less busy on the eye and slightly easier to type.

js> s = 'Hello world.'
Hello world.

We can add two strings together to produce a third string.

js> r = "I'm me. "
I'm me.
js> r + s
I'm me. Hello world.

typeof

There’s a built-in operator called ‘typeof’ that returns a string
that, sort-of, gives the type of a value.

js> typeof(s)
string

Because typeof is an operator (just as ‘+’ is an operator) the
parentheses are not needed, and many JavaScript programmers omit them.

js> typeof s
string

Here we see that typeof produces (returns) a string.

js> typeof typeof s
string

Numbers

JavaScript numbers are platform and processor independent. It uses
IEE 754 to represent both integers and floats.

js> i = 42
42
js> typeof i
number

Booleans

JavaScript has keywords ‘true’ and ‘false’ whose values are always
true and false respectively.

js> t = true
true
js> typeof b
boolean

Logical comparisions also produce Booleans.

js> f = (1 > 2)
false
js> typeof f
boolean

undefined and null

JavaScript has two values that represent None. Later, we’ll see
why, and which to use when. For now we’ll simply note that they are
different, because their types are different.

js> typeof undefined
undefined
js> typeof null
object

Gotchas

js> s = 'Hello world.'
Hello world.
js> s.lang = 'en'
en
js> s.lang === undefined
true

Equality

Equality in JavaScript can be a little odd.

Double equals

JavScript has two operations for equality (and inequality). One of
them is ‘==’ (and ‘!=’ for inequality). It’s the oddest.

Not transitive

If a is equal to b, and if b is equal to c , then we expect
a to be equal to c. This is called the transitive property.

js> '0' == 0 // 'a' is equal to 'b'
true
js> 0 == '' // 'b' is equal to 'c'
true
js> '0' == '' // 'a' is not equal to 'c'
false

Not reflexive

We expect a to be equal to a. This is called the reflexive
property.

js> NaN == NaN
false

Fortunately, this seems to be the only example.

Is symmetric

If a is equal to b then we expect b to be equal to a. This is
called the symmetric property. In JavaScript equality is symmetric.

Triple equality

JavaScript also has ‘===’ (and ‘!==’ for inequality).

Is transitive

Unlike double equals, triple equals is always transitive.

js> '0' === 0 // unequal
false
js> 0 === '' // unequal
false
js> '0' === '' // unequal
false

Not reflexive

js> NaN === NaN
false

By the way, there’s a thread on Facebook with subject Time and Date
on my wall shows NaNNaNNaN at NaN:NaN [http://www.facebook.com/topic.php?uid=4915599711&topic=54061]. I
wonder how that happened.

Is symmetric

Triple equality is still symmetric.

Don’t use double equality

Double equality does implicit conversions and besides has some odd
rules. My advice is don’t use double equality.

Triple equality does not do conversions. If you want to do
conversions in your comparision my advice is to make them explicit.

Compare as string

The easiest conversion is to string. Here are two immutables, a
number and a string.

js> a = 0
0
js> b = '0'
0

These quantities are double equal but not triple equal.

js> a == b
true
js> a === b
false

Here’s how to do an explicit conversion to string before comparison,
which gives an equality.

js> '' + a === '' + b // Converts variables to strings.
true

Note

It’s always easier to read a triple equal comparison, because
you’re not distracted by the complex double equal rules.

Compare as number

[To follow later.]

Objects

JavaScript has objects and is object-oriented, but in an unusual way
(more on that later).

Simple objects

Simple objects are like dictionaries or hashes in other languages.
They support key-value storage and access to attributes. Here’s how
to create a simple object.

js> obj = {}
[object Object]

js> typeof obj
object

We can store attribute values in a simple object (or any object in the
doc:object-tree).

js> obj.s = 'hi'
hi
js> obj.i = 10
10

We can get these values back again.

js> obj.s === 'hi'
true
js> obj.i == 10
true

Missing attributes

It’s not an error to ask for something that’s not there. We get
undefined.

js> obj.dne === undefined
true

We still get undefined if we set the value to undefined.

js> obj.undef = undefined
undefined
js> obj.dne === undefined
true

You can use null to signal that there is a value, but that it is None.

js> obj.none = null
null
js> obj.none === null
true

hasOwnProperty

You can use hasOwnProperty to help figure out why an object has an
undefined attribute. It’s also useful when inspecting the
doc::object-tree. Often, however, it’s better to write your code so
you don’t need to do this (for example by using null).

js> obj.hasOwnProperty('dne')
false
js> obj.hasOwnProperty('undef')
true
js> obj.hasOwnProperty('none')
true

Object literals

You can create a simple object by placing key-value pairs in the curly
braces.

js> someone = {
 > 'name': 'Joe Doe',
 > 'age': 43
 > }
[object Object]

js> someone.age
43

Take care not to put a trailing semicolon in the object literal. It
will work in Firefox but not in Internet Explorer.

Arrays

An array is a list of items. You can put anything is as a value for
the list. Use square brackets to create an array.

js> array = []

Arrays expand to accomodate the data you store in them. You can even
leave gaps.

js> array[0] = 'zero'
zero
js> array[3] = 'three'
three

An array turned into a string consists of the string on its entries
joined by commas.

js> array
zero,,,three
js> array[1] === undefined
true

Array literals

As with simple objects, simply place the values between the square
brackets, separated by commas.

js> seasons = ['spring', 'summer', 'autumn', 'winter']
spring,summer,autumn,winter

As with simple objects, beware of trailing commas and missing entries.
This will work in some browsers and not others.

JSON

JSON [http://www.json.org/],stands for JavaScript Simple Object
Notation. It is very much one of the best parts of JavaScript. It is
the fat-free alternative to XML [http://www.json.org/xml.html], and
is widely used in AJAX (instead of XML). JSON objects are object and
array literals constructed using only simple objects, arrays, strings,
true, false and null.

If your code accepts JSON objects then it will be a lot easier to use
it with AJAX or otherwise integrate it with other systems.

Many programming languages have JSON libraries. You don’t have to use
JavaScript to use JSON.

To provide standards, there are rules on how to write a JSON objects.
Many applications and programming languages will generate valid JSON
for you. I find YAML a convenient way of authoring JSON data.

The object tree

Objects can have attributes. The statements

value = obj.attr # Get the attr of 'a'.
obj.attr = value # Set the attr of 'a'.

respectively set and get the attr attribute of the object
obj. Inheritance is where an object gets some its attributes from
one or other more objects. JavaScript uses an object tree for
inheritance.

Tree

All JavaScript objects are part of an inheritance tree. Each object
in the tree has a parent object, which is also called the prototype
object (of the child). There is a single exception to this rule,
which is the root of the tree. The root of the tree does not have
a parent object.

Note

You can’t get far in JavaScript without understanding the
object tree.

Get

When JavaScript needs to get an attribute value of an object, it first
looks up the attr of the attribute in the object’s dictionary. If the
attr is a key in the dictionary, the associated value is returned.

If the attr is not a key, then the process is repeated using the
object’s parent, grandparent, and so on until the key is found. If
the key is not found in this way then undefined is returned.

Set

When JavaScript needs to set an attribute value of an object it
ignores the inheritance tree. It simply sets that value in the
object’s dictionary.

Root

When the interpreter starts up, the root of the tree is placed at
Object.prototype. (We’ll find out later why that location is used.)

Every object inherits from the root, although perhaps not
directly. Here’s a simple example:

js> root = Object.prototype
js> a = {}
js> a.attr === undefined
true
js> root.attr = 'gotcha'
js> a.attr
gotcha

If we give root a attr attribute then every other object,
including those already created and those not yet created, also has a
attr attribute with the same value. (In practice it’s better not to
change Object.prototpye.)

This applies arrays:

js> array = [0, 1, 2]
0,1,2
js> array.attr
gotcha

And even to functions:

js> f = function(){}
function () {
}

js> f.attr
gotcha

Note

A page might have many scripts, all of which would like to modify
the Object.prototype root object. This can cause bugs and
incompatibilities. So try not to do this.

However, this up-the-tree lookup does not apply if attr is found
earlier in the tree. We continue the previous example to show this,
and the behaviour of set.

js> a.attr = 'fixed'
js> a.attr
fixed
js> root.attr
gotcha

Create

Any tree can be constructed from its root, together with a command
create(parent) that returns a new child of the given parent
node.

In all but the most recent version of JavaScript the create function
is not built in. However, it’s easy to write one, once you know
enough JavaScript. Here’s how its done in the work folder’s
library.js file.

var create = function(parent){

 var tmp = function(){};
 tmp.prototype = parent;
 var child = new tmp();

 return child;
};

Using create

Here’s an example of its use:

js> a = {}
js> b = create(a)
js> a.attr = 'apple'
apple
js> b.attr
apple

And a continuation of the example:

js> c = create(b)
js> c.attr
apple
js> b.attr = 'banana'
banana
js> c.attr
banana

Note

JavaScript uses an inheritance tree. By using create, we can
create any inheritance tree. All JavaScript objects are in this
tree.

Simple classes

JavaScript has objects, which through the object tree support
inheritance. Almost all object-oriented languages have classes and
instances, but JavaScript has neither. This will be explained later,
along with a discussion of the consequences.

For now our focus is on getting going with object-oriented
programming. The easiest way to do this is via create.

Definition

Here’s a factory function that creates classes. It returns a function
called cls, which in turn when called returns instances. At it’s
heart is create, and also apply and arguments, which we’ve not
seen before).

var SimpleClass = function(prototype){

 var cls = function(){

 var instance = create(prototype);
 instance.__init__.apply(instance, arguments);
 return instance;
 };

 return cls;
};

Why cls?

We call the returned function cls because in JavaScript class,
like function is a reserved word in JavaScript. However, in
JavaScript the identifier class has no meaning, and cannot be used
in any valid JavaScript program. It seems that they intended to
provide a built-in class capability, but never got round to it.

Fruit example

Here’s an example of the use of SimpleClass. There’s a bug in it,
and I’ve changed the test so it passes. Can you find the bug and fix
the example?

TEST('SimpleClass', function()
{
 var fruit = {};

 fruit.__init__ = function(name, colour){

 this.name = name;
 this.colour = colour;
 };

 fruit.greet = function(){

 return "Hello, I'm a " + this.color + " " + this.name + ".";
 };

 var Fruit = SimpleClass(fruit);

 var bn = Fruit('banana', 'yellow');
 var rc = Fruit('cherry', 'red');
 var gs = Fruit('Granny Smith', 'green');

 assert(bn.greet() === "Hello, I'm a undefined banana.");

});

The global object

JavaScript has a global object. It is, so to speak, the object of
last resort. If there’s no other suitable object then JavaScript will
use the global object (rather than reporting an error).

Note

Douglas Crockford writes JavaScript’s global object ... is far and
away the worst part of JavaScript’s many bad parts.

Getting global

Here’s how to get the global object.

js> return_this = function(){return this;}

function () {
 return this;
}

js> global = return_this()
[object global]

The programmer who wants to can always obtain access to the global
object.

Global variables

Global variables are nothing more than attributes of the global
object.

js> s = 'Hello world.'
Hello world.
js> global.s
Hello world.
js> global.i = 42
42
js> i
42

Global pollution

It’s very easy to inadvertently pollute (change) the global object.
All it takes is an assignment to an undeclared variable in a function.

js> pollute = function(n){ i = n; };
function (n) {
 i = n;
}
js> i
42
js> pollute(13)
js> i
13

More global pollution

There’s a more subtle way to pollute the global object, which involves JavaScript’s this object.

To begin with, note that we can push values onto an array.

js> array = []

js> array.push(1, 2, 3)
3
js> array
1,2,3

Let’s try using array.push as a stand-alone function.

js> p = array.push
function push() { [native code for Array.push, arity=1] }

js> p(4, 5, 6)
3

The push function returns the length of the object it has just pushed
to. So the value 3 above is a signal that all is not well. And
indeed it is not. The original array is unchanged, and the global
object has an entry at 0.

js> array
1,2,3
js>
js> global[0]
4

It’s also got a length!

js> global.length
3

Explanation

This behaviour is a consequence of What is this? and
Bind is transient, together with JavaScript’s no-exceptions
design.

Closures

You’ll see closures a lot in JavaScript. The reasons for this are:

	In JavaScript, Bind is transient.

	It is callback functions attached to DOM elements that respond to
events.

	Most code attaches callbacks to individual DOM elements (rather
than delegating to a parent element).

Test code

Here’s the test code for closures.

TEST('closures', function()
{
 // A factory for creating get-set pairs.
 var get_set_factory = function(){

 var value;
 var get = function(){
 return value;
 };
 var set = function(new_value){
 value = new_value;
 };

 return {
 get: get,
 set: set
 };
 };

 // Create and unpack two get-set pairs.
 var tmp;
 tmp= get_set_factory();
 var get_a = tmp.get;
 var set_a = tmp.set;

 tmp= get_set_factory();
 var get_b = tmp.get;
 var set_b = tmp.set;

 // Test that both pairs work.
 set_a(12);
 assert(get_a() === 12);

 set_b(13);
 assert(get_b() === 13);

 // Test that each pair has its own value.
 assert(get_a() === 12);

});

Discussion

The factory function creates two functions, get and set, which
refer to the variable value of the factory function. The get
function returns the value of this variable, while the set function
changes it.

To test the factory function we create two get-set pairs. We then
test that each set operation changes the value return by its partner
get operation.

Finally, we test that the two pairs don’t interfere with each other.

Explanation

Objects continue to exist so long as a reference remains to them.
When the last reference to an object is removed (or when the object is
part of cyclic garbage) the object can be destroyed. When the
return value of a function is stored (say as the value of a variable)
then this return value continues to exist. Similarly, anything
referred to by the return value continues to exist.

Closures come about when the return value of a function is itself a
function defined within the outer function (or contains references to
such functions).

Suppose the outer function returns an inner function (or in other
words a function that is defined within the outer function). Suppose
also that the inner function uses a variable (or parameter) of the
outer function. In this situation the inner function holds a
reference to the value of this variable. The code in the inner
function can read (or get) this value. It can also write to this
variable.

One final point. Each call of the outer function creates a new
instantiation of the function variable.

Exercises

A programmer, perhaps in a hurry, misses out a var in the example
above. So now it reads:

var get_set_factory = function(){

 value; // Here's the missing *var*.

	Which tests to you expect to pass, and which to fail?

	Make this change and run the tests. Which actually fail?

	Explain what is happening.

	What does this tell us about coding and testing?

What is this?

JavaScript has a keyword this, whose value depends on the execution
context. It is always an object (and never an immutable, such as a
number).

Test code

TEST('return_this', function()
{
 var return_this = function(){
 return this;
 };

 var default_this = return_this();
 assert(default_this.telltail === 'global');

 var obj = {};
 obj.return_this = return_this;
 assert(obj.return_this === return_this);

 assert(obj.return_this() === obj);
 assert(obj['return_this']() === obj);

 assert(return_this.call(obj) === obj);
 assert(return_this.apply(obj) === obj);

 assert(return_this.call(undefined).telltail === 'global');
 assert(return_this.apply(undefined).telltail === 'global');

});

Discussion

The function return_this is a convenient way of getting of getting
hold of the object that is the value of this. The code that follows
shows:

	The default value of this is the global object.

	When return_this is called as either a method (i.e. an attribute
that is a function) or item of obj then this is obj itself.

	That the call and apply methods of a function allow us to set
the value of this within a particular execution of the function.

	If we pass undefined to function call or apply then we get
the global object as this.

Explanation

Throughout the execution of JavaScript code, the identifier this has
a value, which is an object (and not an immutable value). The value
of this depends on how the JavaScript interpreter got to be
executing the code.

	At the command line this is the global object.

	In a function this is the object from which the interpreter got
the function.

	Because global variables are attributes of the global object, the
rule for calling global variables as functions is a special case of
the previous rule.

	

Here’s a helpful way to look at the situation. It is as if the
interpreter maintains a this stack, which starts containing a single
item, the global object. Each time an item access of an object is
immediately followed by a function call, the object is added to the
this stack, and removed at the end of the function call. For all
other function calls the global object is added to the this stack.

During execution of a function the value of this is the element at
the top of the this stack.

Finally, the function call and apply methods allow for a
particular object to be placed at the top of the this stack before
the function is called.

Exercises

	At the command-line try making an assignment to this. What
happens?

	Try loading a JavaScript program that makes an assignment to
this. What happens?

	For what values of value is the following true?

return_this.apply(value) === value;

	Write a simple test that detects these values.

Bind is transient

Test code

Here’s the test code for attribute bind.

TEST('transient-bind', function()
{
 // Set up the test object.
 var return_this = function(){
 return this;
 };
 var obj = {
 return_this : return_this
 };
 assert(obj.return_this === return_this);

 // Deferring method call changes the outcome.
 var method_deferred = obj.return_this;
 assert(method_deferred === obj.return_this);
 assert(method_deferred() !== obj.return_this()); // AAA

 // The two outcomes, precisely stated.
 assert(obj.return_this() === obj);
 assert(method_deferred().telltail === 'global');

 // Another view on the matter.
 assert(method_deferred === return_this);
 assert(method_deferred() === return_this()); // BBB

});

Discussion

We create an object that has a return_this method. The outcome of
calling return_this depends on how it is called.

There’s a logic in the test code that produces contradictory, or at
least surprising, outcomes.

From

we would expect

But this means that in obj.return_this() the obj is not relevant.
But JavaScript (or its designers) wanted objects to have methods, so
they introduced a special rule.

Explanation

JavaScript does not distinguish classes and instances. Python, and
perhaps other dynamic languages, does. This allows Python to supply a
bound method, which retains a reference to the object, when a function
belonging to the class is called on an instance.

Here’s a Python (version 3) command line dialogue that illustrates
this.

>>> def method(): pass # The function.
...
>>> class A: method = method # The class.
>>> A.method # Function from class.
<function method at 0x15be518>
>>> A.method is method # Same as the original function.
True
>>> a = A() # Instance.
>>> a.method # Bound method, not original function.
<bound method A.method of <__main__.A object at 0x16b9d10>>

The odd behaviour shown in the JavaScript test code is a consequence
of JavaScript not distinguishing between classes and instances.

What is new?

This can be omitted at a first reading, and omitted altogether if you
never have to deal with code that uses the new operator. If you do,
then you must read about the missing new problem.

JavaScript has an object tree. This is a fundamental language
feature. The new operator is a way of adding objects to the tree.
The create function, which is built-in to the latest version of
JavaScript, can be defined in terms of new, and vice versa.

Test code

TEST('new-operator', function()
{
 // A 'traditional class'. It records 'this' as a side effect.
 var this_in_Fn;
 var Fn = function(){
 this_in_Fn = this;
 };

 // Call the 'class' without the 'new'.
 this_in_Fn = null; // Clear any previous value.
 var non_instance = Fn();
 assert(non_instance === undefined);
 assert(this_in_Fn.telltail === 'global');

 // Call the 'class' with the 'new'.
 this_in_Fn = null; // Clear any previous value.
 var instance = new Fn();
 assert(instance === this_in_Fn);
 assert(instance.telltail === undefined);

 // Demonstrate that instance is a descendant of Fn.prototype.
 Fn.prototype.telltail = 'instance-of-Fn';
 assert(instance.telltail === 'instance-of-Fn');

 // We can give Fn a new prototype.
 instance.new_telltail = 'child-of-instance';
 Fn.prototype = instance;

 // And now an instance of Fn has two telltails.
 var second_instance = new Fn();
 assert(second_instance.telltail === 'instance-of-Fn');
 assert(second_instance.new_telltail === 'child-of-instance');

});

Discussion

By changing the prototype object of Fn we start building a tree of
objects.

There is a built-in relation between an object and its parent. There
is no relation between the object and its constructor, here called
Fn, except that at the time of construction the parent of the object
is Fn.prototype.

The exact rules for the behaviour of new are complicated and not
given here.

No missing new warning

We saw that when Fn is called without the new then during its
execution the value of this is the global object. If the
constructor Fn mutates this (and almost every constructor does),
then it is the global object that is mutated.

This is very bad:

	You may clobber someone elses data.

	Someone else may clobber your data.

	If you create two instances, you will clobber your own data.

	Testing for this error involves extra work.

	Bugs that arise from this error can appear random and can be hard
to find.

Note

Crockford writes A much better alternative is to not use new at
all.”

Arguments

This can be omitted at a first reading. The main point here is that
in JavaScript

	There is no checking for number and type of arguments.

	The arguments actually supplied are stored in a special variable,
called arguments.

	The value of arguments is almost, but not exactly, an array.

Test code

TEST('return_arguments', function()
{
 var return_arguments = function(){
 return arguments;
 };

 var my_arguments = return_arguments(0, 1);

 assert(my_arguments.length === 2);

 assert(my_arguments[0] === 0);
 assert(my_arguments[1] === 1);

 assert('' + my_arguments === '[object Object]');
 assert('' + [0, 1] === '0,1');

 var array_slice = [].slice;
 var my_arguments_fixed = array_slice.call(my_arguments);

 assert('' + my_arguments_fixed === '0,1');

 var obj = {};
 assert(obj.toString.call(my_arguments_fixed) === '[object Array]');

});

Mark Miller’s device

This can be omitted at a first reading. Mark Miller is one of the
leading JavaScript experts at Google. He’s been credited an ingenious
application of call that gives a simple and reliable test for whether
or not an object is an array.

This may not sound very much, but it is something that had been
puzzling the other experts for some years. For example, Crockford in
his Good Parts (published 2008, page 61) gives a much more complex
and less reliable solution to this problem.

The moral of this story is that even the experts in JavaScript can
have difficulty finding the best way to solve a simple problem.

Test code

TEST('millers-device', function()
{
 var array = [];
 var obj = {};
 var fn = function(){};

 assert(typeof array === 'object');
 assert('' + obj === '[object Object]');

 assert(obj.toString() === '[object Object]');

 var object_toString = obj.toString;

 assert(object_toString.call(array) === '[object Array]');
 assert(object_toString.call(fn) === '[object Function]');

});

Exercise one

Here’s some JavaScript code I found somewhere. I’ve changed the names
of everything to hide the origin of the code. But it’s not something
I’ve made up.

The exercise is

	Understand and describe what it does.

	Provide clearer code that does the same thing.

	Suggest a better way of going about things.

var AAA = (function (BBB)
{
 BBB.fff = function(ccc)
 {
 return {
 ggg: function(ddd)
 {
 return BBB.hhh(ddd, ccc.iii());
 }
 };
 };
 return BBB;

}(AAA || {}));

Hints

	The code creates and calls an anonymous function, a bit like this.

js> a = function(x){return x + 1}(2)
3

	What happens if AAA is an object?

	What happens if AAA is undefined?

	For now, ignore the assignment to BBB.fff. What value does AAA
get? (The answer depends the initial value of AAA.)

Solution one

Here’s the code we’re studying.

var AAA = (function (BBB)
{
 BBB.fff = function(ccc)
 {
 return {
 ggg: function(ddd)
 {
 return BBB.hhh(ddd, ccc.iii());
 }
 };
 };
 return BBB;

}(AAA || {}));

Verbal summary

We are making sure that there’s an object AAA and giving it an
attribute AAA.fff, which is a function. We won’t say more about the
function in this summary.

Hoisting once-only arguments

First, we’ll hoist the argument to the anonymous function into its
body. We can always do this, without changing the meaning, provided the
function is called only once.

var AAA = function ()
{
 var BBB = AAA || {};
 BBB.fff = function(ccc)
 {
 return {
 ggg: function(ddd)
 {
 return BBB.hhh(ddd, ccc.iii());
 }
 };
 };
 return BBB;

}();

There, that’s better. We no longer have to read to the end of the
function to find out what BBB is (and in particular its relationship
with AAA).

What is AAA?

Next, we’ll hide (or ignore) the assigment to BBB.fff. This
assignment sets an attribute on the object pointed to by the variable
BBB. In other words, it mutates the object pointed to by BBB, but the
variable BBB still points to the same object as it did before.

var AAA = function ()
{
 var BBB = AAA || {};
 return BBB;
}();

If AAA starts out as an object then the expression

AAA || {}

evaluates to AAA, while if AAA is undefined then it evaluates to the
newly created object literal (the left-and-right curly braces). In
either case, this value is assigned to the local variable BBB, which
is then returned by the anonymous function and bound to AAA.

Put another way, if AAA starts off as undefined then it is bound to a
new object, while if it starts off as an object then it finishes as
the same object.

Therefore, our truncated version of the original exercise is equivalent to

var AAA = AAA || {};

This idiom is very common in JavaScript, and is (as here) a
consequence of using objects as namespaces (which is better than using
the global object) and defensiveness about the order in which files
are loaded.

Here’s a command line session that shows this equivalence. To begin
with AAA is undefined and the assignment binds AAA to a new object.
For the second assignment AAA is defined and the assignment binds AAA
to the object is already bound to.

js> var AAA = AAA || {}
js> AAA
[object Object]
js> pointer = AAA
[object Object]
js> var AAA = AAA || {}
js> pointer === AAA
true

The assignment to BBB.fff

Reading the code, it looks as if BBB is local to the anonymous
function. As a variable it is, but its value is not. The value of
BBB is bound to the global object AAA at the end of the function call.

The following is almost equivalent to our original JavaScript code.
Note that BBB.hhh has been changed to AAA.hhh.

var AAA = AAA || {};

AAA.fff = function(ccc)
{
 return {
 ggg: function(ddd)
 {
 return AAA.hhh(ddd, ccc.iii());
 }
 };
};

Caveat

Why did I say almost equivalent? Because we might subsequently do
something like

var CCC = AAA;
AAA = undefined;

For the original code the closure variable BBB still exists and points
to the same object as CCC, even though AAA is undefined. Thus, the
reference to BBB.hhh in the original code will continue to work.

For the revised code, when the value of AAA is set to undefined the
reference to AAA.hhh will fail.

Exercise two

Here’s some more JavaScript code I found. I’ve changed the names of
everything to hide the origin of the code. But it’s not something
I’ve made up.

var copy_attributes = function(tgt, src){

 tgt.aaa = src.get_aaa();
 tgt.bbb = src.get_bbb();
 tgt.ccc = src.get_ccc();
 tgt.ddd = src.get_ddd();
 tgt.eee = src.get_eee();
 tgt.fff = src.get_fff();
 tgt.ggg = src.get_ggg();
 tgt.hhh = src.get_hhh();
};

The exercise is

	Rewrite the function copy_attributes so that it makes a loop over

var keys = ['aaa', 'bbb', 'ccc', 'ddd', 'eee', 'fff', 'ggg', 'hhh'];

	Write a copy_attributes_factory function so that we can write

var copy_attributes = copy_attributes_factory(keys);

	Write a Fields class such that something like this will work:

var aaa = Fields(keys);
aaa.copy_attributes(src, tgt);

Hints

	In JavaScript attribute access and item access are the same.
First we use item access to set:

js> a = {}
[object Object]
js> key = 'attrname'
attrname
js> a[key] = 42
42

and then we use attribute access to get:

js> a.attrname
42

	This applies even for function (aka method) calls.

	Have the factory function store the keys in a closure.

	There are many ways of writing Fields. Choose one that suits you.

Solution two

Here’s the code we are studying. The first task is make a loop that
does the assignments.

var copy_attributes = function(tgt, src){

 tgt.aaa = src.get_aaa();
 tgt.bbb = src.get_bbb();
 tgt.ccc = src.get_ccc();
 tgt.ddd = src.get_ddd();
 tgt.eee = src.get_eee();
 tgt.fff = src.get_fff();
 tgt.ggg = src.get_ggg();
 tgt.hhh = src.get_hhh();
};

Making a loop

As previously hinted, we use item access rather than attribute access.
The problem with attribute access is that the name of the key is
hard-coded and we want it to vary during the loop.

Here’s the solution. There’s a bit of overhead in setting up the
loop, but the body of the loop is straightforward.

var copy_attributes = function(tgt, src){

 var keys = ['aaa', 'bbb', 'ccc', 'ddd', 'eee', 'fff', 'ggg', 'hhh'];
 var i;
 var key;

 for(i=0; i< keys.length; i++){
 tgt[key] = src['get_' + key]();
 }
};

Factory function

The second task is to write a factory function that takes the list of
keys as a parameter.

This is a common refactoring pattern, and so is worth learning well.
First we give the code, and then the explanation.

var copy_attributes_factory = function(keys){

 return function(src, tgt){
 var i;
 var key;

 for(i=0; i< keys.length; i++){
 tgt[key] = src['get_' + key]();
 };
 };
};

Here’s what we’ve done. We created a wrapper function, with keys as
its only parameter. This will be our factory function. We’ve placed
the original function into the body of the wrapper, and return it (as
the value of the wrapper function). Finally, we clean up by removing
the keys constant from the inner function.

There, it’s done! When the factory function executes it returns an
instance of the inner function for which keys is the argument we
supplied to the factory.

A prototype class

The third task is to write a Fields class that has a copy_attributes
method.

Here’s a function prototype based solution. It relies on the user of
the class supplying the new operator to create the new instance (and
chaos results if the user forgets).

var Fields = function(keys){
 this.keys = keys;
};

Fields.prototype = {
 copy_attributes : function(src, tgt){

 var keys = this.keys;
 var i;

 for(i=0; i< keys.length; i++){
 tgt[key] = src['get_' + key]();
 };
 }
};

A minor point is the trailing sequence of right curly braces. Two are
followed by a semicolon, but the middle one is not. Why? What
happens if we put a semicolon there?

A SimpleClass solution

Here’s another solution to the third task, which does not require the
user to supply a new operator when creating instances. Instead it
uses a factory function, which we call Class , that creates an
instance constructor function from a prototype object.

// Rhino $ js -f library.js -f solution-2-d.js -

var fields = {};

fields.__init__ = function(keys){
 this.keys = keys;
};

fields.copy_attributes = function(src, tgt){

 var keys = this.keys;
 var key;
 var i;

 for(i=0; i< keys.length; i++){
 key = keys[i];
 tgt[key] = src['get_' + key]();
 };
};

var Fields = SimpleClass(fields);

Exercise: write test

Here’s an exercise. Write a JavaScript file that tests this solution.

Exercise: bound method class

Recall that this-based instance methods are somewhat fragile. In
other words, code like this will fail (and make unwanted changes to
the global object):

var instance = MyClass(arg1, arg2);

var fn = instance.method;
element.onclick(fn);

Let’s say that a class has bound methods if we can safely pass
around instance methods. In other words, we want instance.method to
have no dependence on the value of this.

We can achieve this by using a different class factory function.

var myclass = {} // The prototype object.
// Add methods to myclass.
var MyClass = BoundMethodClass(myclass);

The exercise is to create (and test) a BoundMethodClass factory.

Index

 _static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

_static/up.png

nav.xhtml

 Table of Contents

 		Welcome to Core JavaScript training

 		Getting started

 		What you need

 		Windows and Linux

 		Are you ready?

 		Yes, you're ready

 		Counters example

 		Goal

 		counters.html

 		counters.css

 		counters.js

 		Test tools

 		How to write tests

 		How to run tests

 		Rhino

 		JSDB

 		testools.js

 		Immutables

 		Strings

 		typeof

 		Numbers

 		Booleans

 		undefined and null

 		Gotchas

 		Equality

 		Double equals

 		Not transitive

 		Not reflexive

 		Is symmetric

 		Triple equality

 		Is transitive

 		Not reflexive

 		Is symmetric

 		Don't use double equality

 		Compare as string

 		Compare as number

 		Objects

 		Simple objects

 		Missing attributes

 		hasOwnProperty

 		Object literals

 		Arrays

 		Array literals

 		JSON

 		The object tree

 		Tree

 		Get

 		Set

 		Root

 		Create

 		Using create

 		Simple classes

 		Definition

 		Why cls?

 		Fruit example

 		The global object

 		Getting global

 		Global variables

 		Global pollution

 		More global pollution

 		Explanation

 		Closures

 		Test code

 		Discussion

 		Explanation

 		Exercises

 		What is this?

 		Test code

 		Discussion

 		Explanation

 		Exercises

 		Bind is transient

 		Test code

 		Discussion

 		Explanation

 		What is new?

 		Test code

 		Discussion

 		No missing new warning

 		Arguments

 		Test code

 		Mark Miller's device

 		Test code

 		Exercise one

 		Hints

 		Solution one

 		Verbal summary

 		Hoisting once-only arguments

 		What is AAA?

 		The assignment to BBB.fff

 		Caveat

 		Exercise two

 		Hints

 		Solution two

 		Making a loop

 		Factory function

 		A prototype class

 		A SimpleClass solution

 		Exercise: write test

 		Exercise: bound method class

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

